精英家教网 > 高中数学 > 题目详情
1.已知R是实数集,A={y|y=2x-1,x∈R},B={x|y=log2(1-x2)},则A∩B=(  )
A.(-1,+∞)B.(-1,1)C.[-1,1)D.(1,+∞)

分析 先分别求出集合A和B,由此能求出A∩B.

解答 解:∵A={y|y=2x-1,x∈R}=(-1,+∞),
$B=\left\{{x\left|{y={{log}_2}({1-{x^2}})}\right.}\right\}=({-1,1})$,
∴A∩B=(-1,1).
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知圆M:x2+y2=4,在圆周上随机取一点P,则P到直线y=-x+2的距离大于$2\sqrt{2}$的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<\frac{π}{2})$的最小值为-3,且f(x)图象相邻的最高点与最低点的横坐标之差为2π,又f(x)的图象经过点$(0,\frac{3}{2})$;
(1)求函数f(x)的解析式;
(2)若方程f(x)-k=0在$x∈[0,\frac{11π}{3}]$有且仅有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数a,b满足不等式log2a<log3b,则下列结论:①0<b<a<1②0<a<b<1③1<a<b④1<b<a其中可能成立的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}{{a}^{x}-a,x>1}\\{{x}^{2}+\frac{1}{2}ax-2,x≤1}\end{array}\right.$是(-$\frac{3}{8}$,+∞)上的增函数,那么a的取值范围是(  )
A.($\frac{3}{2}$,2)B.(1,2]C.[$\frac{3}{2}$,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,7},则集合A∩(∁UB)=(  )
A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={第一象限角},N={锐角},P={小于90°角},则下列关系式中正确的是(  )
A.M=N=PB.M?P=NC.M∩P=ND.N∩P=N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知奇函数y=f(x) 的定义域为(-2,2),且f(x)在(-2,2)内是减函数,解不等式f(1-x)+f(1-3x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x2-4x+3<0},B={|x|$\frac{x-4}{2-x}$≥0},则A∩B=(  )
A.[2,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

同步练习册答案