精英家教网 > 高中数学 > 题目详情
如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°.E为BB1的中点,D点在AB上且DE=
3

(Ⅰ)求证:CD⊥平面A1ABB1
(Ⅱ)求三棱锥A1-CDE的体积.
分析:(Ⅰ)根据DE=
3
,可得D为AB的中点,然后利用线面垂直的判定定理,证明CD⊥AB,即可证明CD⊥平面A1ABB1
(Ⅱ)根据锥体的条件公式确定三棱锥的底面积和高即可以求出锥体的体积.
解答:解:(Ⅰ)在直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,
∴△ACB为等腰直角三角形,∴AB=2
2

∵E为BB1的中点,∴BE=1,
又DE=
3

∴BD=
2
,即D为AB的中点,
∴CD⊥AB.
又AA1⊥CD,AA1∩AB=A,
∴CD⊥平面A1ABB1
(Ⅱ)∵CD⊥平面A1ABB1
∴CD是三棱锥C-A1DE的高,且CD=
2

S△ACD=
1
2
×
2
×2=
2
S△BDE=
1
2
×
2
×1=
2
2

SA1B1E=
1
2
×
2
×1=
2
2

SA1DE=2×2
2
-SA1B1E-S△ACD-S△BDE
=4
2
-
2
-
2
2
-
2
2
=2
2

VA1-CDE=VC-A1DE=
1
3
SA1DE?CD
=
1
3
×2
2
×
2
=
4
3

∴三棱锥A1-CDE的体积为
4
3
点评:本题主要考查线面垂直的判断,以及三棱锥的体积的计算,利用等积法将三棱锥转化为规则的三棱锥是解决本题关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案