精英家教网 > 高中数学 > 题目详情

在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k丨n∈Z},k=0,1,2,3,4。给出如下四个结论:

       ①2011∈[1]

       ②-3∈[3];

       ③Z=[0]∪[1]∪[2]∪[3]∪[4]

       ④“整数a,b属于同一“类”的充要条件是“a-b∈[0]”。

       其中正确结论的个数是

       A.1                                  B.2

       C.3                                  D.4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k丨n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2011∈[1];
②-3∈[3];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2011∈[1];   
②-3∈[3];   
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.
其中,正确结论的是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2013∈[3];         
②-2∈[2];   
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④整数a,b属于同一“类”的充要条件是“a-b∈[0]”.
其中,正确结论的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头二模)在整数集Z中,被5除所得余数为k的所有整数组成一个“类“,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下三个结论:
①2013∈[3]
②-2∈[2]
③Z=[0]∪[1]∪[2]∪[3]∪[4];
其中,正确结论的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在整数集z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],则[k]=[5n+k],k=0,1,2,3,4,则下列结论错误的是(  )

查看答案和解析>>

同步练习册答案