精英家教网 > 高中数学 > 题目详情

两向量的模分别为7,8,的夹角为,试求的模.

答案:
解析:

解:


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•奉贤区二模)动圆C过定点F(
p
2
,0)
,且与直线x=-
p
2
相切,其中p>0.设圆心C的轨迹Γ的程为F(x,y)=0
(1)求F(x,y)=0;
(2)曲线Γ上的一定点P(x0,y0)(y0≠0),方向向量
d
=(y0,-p)
的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB
(3)曲线Γ上的两个定点P0(x0,y0)、Q0(x0y0),分别过点P0,Q0作倾斜角互补的两条直线P0M,Q0N分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区二模)动圆C过定点(1,0),且与直线x=-1相切.设圆心C的轨迹Γ方程为F(x,y)=0
(1)求F(x,y)=0;
(2)曲线Γ上一定点P(1,2),方向向量
d
=(1,-1)
的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB
(3)曲线Γ上的一个定点P0(x0,y0),过点P0作倾斜角互补的两条直线P0M,P0N分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳三模)设定义域为[x1,x2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量
OA
=(x1,y1),
OB
=(x2,y2),
OM
=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),又有向量
ON
OA
+(1-λ)
OB
,现定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指|
MN
|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:
①A、B、N三点共线;
②直线MN的方向向量可以为
a
=(0,1);
③“函数y=5x2在[0,1]上可在标准1下线性近似”;
④“函数y=5x2在[0,1]上可在标准
5
4
下线性近似”.
其中所有正确结论的番号为
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•朝阳区一模)设z1,z2是两个非零复数,且|z1+z2|=|z1-z2|;设复数z=z1+z2,在复平面内与复数z、z1、z2对应的向量分别为
OZ
OZ1
OZ2

(Ⅰ)在复平面内画出向量
OZ
OZ1
OZ2
,并说出以O、Z1、Z、Z2为顶点的四边形的名称;
(Ⅱ)求证:(
z1
z2
)2
是负实数.

查看答案和解析>>

同步练习册答案