科目:高中数学 来源:2013年上海市四区(静安、杨浦、青浦、宝山)高考二模理科数学试卷(解析版) 题型:解答题
已知数列
的前
项和为
,且满足
(
),
,设
,
.
(1)求证:数列
是等比数列;
(2)若
≥
,
,求实数
的最小值;
(3)当
时,给出一个新数列
,其中
,设这个新数列的前
项和为
,若
可以写成
(
且
)的形式,则称
为“指数型和”.问
中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江西南昌10所省高三第二次模拟突破冲刺理科数学(八)(解析版) 题型:选择题
设等差数列
满足:
,公差
. 若当且仅当
时,数列
的前
项和
取得最大值,则首项
的取值范围是(
)
A.
B.![]()
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com