精英家教网 > 高中数学 > 题目详情
函数f(x)=Asin(ωx+?),(A>0,0<ω,|?|<
π
2
)
的图象如图所示,则f(x)=
2sin(
π
8
x+
π
4
2sin(
π
8
x+
π
4
分析:利用图象的最高点确定A的值,利用周期确定ω,再根据图象过点(2,2),确定φ的值,即可求函数f(x)的解析式;
解答:解:由题意,函数的最大值为2,∴A=2,
∵T=4×(6-2)=16,
∴ω=
16
=
π
8

∴f(x)=2sin(
π
8
x+φ),
∵图象过点(2,2),
∴2sin(
π
8
×2+φ)=2,
∵|φ|<
π
2
,∴φ=
π
4

∴f(x)=2sin(
π
8
x+
π
4

故答案为 2sin(
π
8
x+
π
4
点评:本题考查三角函数解析式的确定,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)
的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若图象g(x)与函数f(x)的图象关于点P(4,0)对称,求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)
的图象(部分)如图所示,则ω,φ分别为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

x∈[-
π
6
3
]
时,函数f(x)=Asin(ωx+θ) (A>0,ω>0,|θ|<
π
2
)
的图象如图所示.
(1)求函数f(x)在[-
π
6
3
]
上的表达式;
(2)求方程f(x)=
2
2
[-
π
6
3
]
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网函数f(x)=Asin(ωx+φ),x∈R(A>0,ω>0,|φ|<
π
2
)
的一段图象如图5所示:将y=f(x)的图象向右平移m(m>0)个单位,可得到函数y=g(x)的图象,且图象关于原点对称,g(
π
2013
)>0

(1)求A、ω、φ的值;
(2)求m的最小值,并写出g(x)的表达式;
(3)若关于x的函数y=g(
tx
2
)
在区间[-
π
3
π
4
]
上最小值为-2,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,x∈R,|φ|<
π
2
)
的图象(部分)如图所示,则f(x)的解析式是(  )
A、f(x)=5sin(
π
3
x+
π
6
)
B、f(x)=5sin(
π
6
x-
π
6
)
C、f(x)=5sin(
π
6
x+
π
6
)
D、f(x)=5sin(
π
3
x-
π
6
)

查看答案和解析>>

同步练习册答案