精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率是,且经过点M(2,1).直线与椭圆相交于A,B两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线MA,MB的斜率分别是k1,k2,求证k1+k2为定值.
【答案】分析:(Ⅰ)利用椭圆的离心率是,且经过点M(2,1),可求几何量,从而可求椭圆的方程;
(Ⅱ)直线方程代入椭圆方程,利用韦达定理,结合斜率公式,化简可得结论.
解答:(Ⅰ)解:∵椭圆的离心率是,且经过点M(2,1),

∴椭圆方程为
(Ⅱ)证明:直线方程代入椭圆方程,化简可得x2+2mx+2m2-4=0,
设A(x1,y1),B(x2,y2),则x1+x2=-2m,x1x2=2m2-4,
∴k1+k2=+==
==0
即k1+k2为定值.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
交于不同的两点M,N,过点M,N作x轴的垂线,垂足恰好是椭圆的两个焦点,已知椭圆的离心率是
2
2
,直线l的斜率存在且不为0,那么直线l的斜率是
±
2
2
±
2
2

查看答案和解析>>

科目:高中数学 来源:2010年临川二中新余四中高三暑假联考文科数学卷 题型:解答题

已知椭圆的离心率是,右焦点到上顶点的距离为,点是线段上的一个动点.

(1)求椭圆的方程;

(2)是否存在过点且与轴不垂直的直线与椭圆交于两点,使得,并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年黑龙江省高二上学期期末考试数学文卷 题型:解答题

、已知椭圆的离心率是,长轴长是为6,

(1)求椭圆的方程;

(2)设直线交于两点,已知点的坐标为,求直线的方程。

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线l与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
交于不同的两点M,N,过点M,N作x轴的垂线,垂足恰好是椭圆的两个焦点,已知椭圆的离心率是
2
2
,直线l的斜率存在且不为0,那么直线l的斜率是______.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市西城区高二(上)期末数学试卷(文科)(解析版) 题型:解答题

已知椭圆的离心率是
(1)证明:a=2b;
(2)设点P为椭圆上的动点,点,若的最大值是,求椭圆的方程.

查看答案和解析>>

同步练习册答案