精英家教网 > 高中数学 > 题目详情
某工厂生产10个产品,其中有2个次品,从中任取3个产品进行检测,则3个产品中至多有1个次品的概率为
14
15
14
15
分析:所有的取法共有
C
3
10
=120种,用分类讨论的方法求得取出的3个产品中至多有1个次品的取法有112种,由此求得取出的3个产品中至多有1个次品的概率.
解答:解:从工厂生产10个产品中任取3个产品进行检测,所有的取法共有
C
3
10
=120种,
其中,取出的3个产品中至仅有1个次品的取法有
C
2
8
C
1
2
=56种,取出的3个产品中没有次品的取法有
C
3
8
=56种,
则取出的3个产品中至多有1个次品的取法有56+56=112种,
故取出的3个产品中至多有1个次品的概率为
112
120
=
14
15

故答案为
14
15
点评:本题考查古典概型及其概率计算公式的应用,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P、P
产品\概率\工序 第一工序 第二工序
0.8 0.85
0.75 0.8
(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;
产品\利润\等级 一等 二等
5(万元) 2.5(万元)
2.5(万元) 1.5(万元)
(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元.设x、y分别表示生产甲、乙产品的数量,在(II)的条件下,x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
产品\用量\项目 工人(名) 资金(万元)
8 5
2 10

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品,计划每天每种产品的生产量不少于15吨,已知生产甲产品1吨,需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨,需煤4吨,电力5千瓦时,劳力10个;甲产品每吨的利润为7万元,乙产品每吨的利润为12万元;但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天生产甲、乙两种产品各多少吨,才能使利润总额达到最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(量大供应量)如下表所示:
资源\消耗量\产品 甲产品(每吨) 乙产品(每吨) 资源限额(每天)
煤(t) 9 4 360
电力(kw•h) 4 5 200
劳动力(个) 3 10 300
利润(万元) 6 12
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产A、B两种产品,已知制造A产品1kg要用煤9t,电力4kw,劳力(按工作日计算)3个;制造B产品1kg要用煤4t,电力5kw,劳力10个.又已知制成A产品1kg可获利7万元,制成B产品1kg可获利12万元.现在此工厂由于受到条件限制只有煤360t,电力200kw,劳力300个,在这种条件下应生产A、B产品各多少kg能获得最大的经济效益?

查看答案和解析>>

同步练习册答案