精英家教网 > 高中数学 > 题目详情
sin(π-α)cos(
π
2
+α)
sin(π+α)
+
sin(
π
2
-α)cos(
π
2
-α)
cos(π+α)
=
0
0
分析:原式第一项分子的第一个因式利用诱导公式sin(π-α)=sinα化简,第二个因式利用诱导公式cos(
π
2
+α)=-sinα化简,分母利用诱导公式sin(π+α)=-sinα化简,第二项分子第一个因式利用诱导公式sin(
π
2
-α)=cosα,第二个因式利用cos(
π
2
-α)=sinα化简,分母利用诱导公式cos(π+α)=-cosα化简,约分后合并即可得到值.
解答:解:原式=
sinα•(-sinα)
-sinα
+
cosαsinα
-cosα

=
-sin2α
-sinα
+
cosαsinα
-cosα

=sinα-sinα=0.
故答案为:0
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在(0,2π)内使 sin x>|co s x|的x的取值范围是(  )
A、(
1
4
π,
3
4
π)
B、(
1
4
π,
1
2
π]∪(
5
4
π,
3
2
π]
C、(
1
4
π,
1
2
π)
D、(
5
4
π,
7
4
π)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知coα=-
513
,α为第三象限角,求sinα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=
.
a0
0b
.
把圆C:x2+y2=1变换为椭圆E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2
3
求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在(0,2π)内使 sin x>|co s x|的x的取值范围是(  )
A.(
1
4
π,
3
4
π)
B.(
1
4
π,
1
2
π]∪(
5
4
π,
3
2
π]
C.(
1
4
π,
1
2
π)
D.(
5
4
π,
7
4
π)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南京市高三(上)学情调研数学试卷(二)(解析版) 题型:解答题

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=把圆C:x2+y2=1变换为椭圆E:=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2≥4.

查看答案和解析>>

同步练习册答案