精英家教网 > 高中数学 > 题目详情
已知x,y满足
x≥0
y≥0
2x+y-2≤0.
则z=x+y的最大值是(  )
A、1B、1C、2D、3
分析:先根据约束条件画出可行域,设z=x+y,再利用z的几何意义求最值,只需求出直线z=x+y过可行域内的点A时,z最大,从而得到z值即可.
解答:精英家教网解:先根据约束条件画出可行域,
设z=x+y,
将最大值转化为y轴上的截距,
当直线z=x+y经过A(0,2)时,z最大,
最大值为:2
故选C.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•聊城二模)已知x,y满足
x≥2
x+y≤4
-2x+y+c≥0
且目标函数z=3x+y的最小值是5,则z的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
x≤2
2x-y≥0
ax+by+c≥0
且目标函数z=y-3x的最大值为-1,最小值为-5,则
a+2b+3c
a
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知x、y满足
x≤2
y≤2
x+y≥2
,则
y
x-1
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上饶二模)已知x,y满足
x-y+6≥0
x+y≥0
x≤3
,若z=ax+y
的最大值为3a+9,最小值为3a-3.则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
x-y+5≤0
x≤3
x+y+1≥0
,则z=
y+6
x
的取值范围为(  )

查看答案和解析>>

同步练习册答案