精英家教网 > 高中数学 > 题目详情
若B={x|x 2-3x+2<0},是否存在实数a,使A={x|x 2-(a+a 2)x+a 3<0},且A∪B=B?
分析:由B={x|x2-3x+2<0},得B={x|1<x<2},由A∪B=B,得A⊆B,由x2-(a+a2)x+a3<0得(x-a)(x-a2)<0.再分类讨论能得到实数a.
解答:解:由B={x|x2-3x+2<0},得B={x|1<x<2},
∵A∪B=B,
∴A⊆B,
由x2-(a+a2)x+a3<0得(x-a)(x-a2)<0.
(1)当a=0,或a=1时,得A=∅,满足题意;
(2)当0<a<1时,A={x|a2<x<a},由A⊆B,得
a≥1
a2
2

1≤a≤
2

当a>a2时 即 0<a<1时
A={x|a2<x<a} 因为a<1 所以与1<x<2 无交集,所以不成立.
(3)当a<0,或a>1时,
A={x|a<x<x2},由A⊆B得
a≥1
a2≤2

所以1<a≤
2

综合得a=0,或1≤a≤
2
点评:本题考查集合的性质和一元二次方程的解法,解题时要认真审题,注意分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义集合A-B={x|x∈A,且x∉B},若集合A={x|2x+1>0},集合B={x|
x-23
<0},则集合A-B=
{x|x≥2}
{x|x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若B={x|x 2-3x+2<0},是否存在实数a,使A={x|x 2-(a+a 2)x+a 3<0},且A∪B=B?

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

已知集合A={x|3x-7>0},B={x|x是不大于8的自然数},C={x|x≤a,a为常数},D={x|x≥a,a为常数}.
(1)求A∩B;
(2)若A∩C≠,求a的取值集合;
(3)若A∩C={x|<x≤3},求a的取值集合;
(4)若A∩D={x|x≥-2},求a的取值集合;
(5)若B∩C=,求a的取值集合;
(6)若B∩D中含有元素2,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省南通市启东中学高一(上)期中数学试卷(解析版) 题型:解答题

若B={x|x 2-3x+2<0},是否存在实数a,使A={x|x 2-(a+a 2)x+a 3<0},且A∪B=B?

查看答案和解析>>

同步练习册答案