精英家教网 > 高中数学 > 题目详情
精英家教网如图,边长为1的正三角形SAB所在平面与直角梯形ABCD所在平面垂直,且AB∥CD,BC⊥AB,BC=1,CD=2,E、F分别是线段SD、CD的中点.
(I)求证:平面AEF∥平面SBC;
(Ⅱ)求二面角S-AC-F的大小.
分析:(I)由已知中F为CD的中点,易判断四边形ABCD为平行四边形,进而AF∥BC,同时EF∥SC,再由面面平行的判定定理,即可得到答案.
(II)取AB的中点O,连接SO,以O为原点,建立如图所示的空间坐标系,分别求出平面SAC与平面ACF的法向量,代入向量夹角公式,即可求出二面角S-AC-F的大小.
解答:精英家教网证明:(Ⅰ)∵fF别是CD的中点,
∴FC=
1
2
CD=1.
又AB=1,所以FC=AB.
∵FC∥AB,
∴四边形ABCF四边形.
∴AF∥BC
∵E是SD的中点
∴EF∥SC
又∵AF∩EF=F,BC∩SC=C
∴平面AEF∥平面SBC
解:(II)取AB的中点O,连接SO,∵SO⊥△SAB,
以O为原点,建立如图所示的空间坐标系O-xyz
则有A(0,-
1
2
,0),C(1,
1
2
,0),S(0,0,
3
2
),F(1,-
1
2
,0),
AC
=(1,1,0),
AS
=(0,
1
2
3
2
),(7分)
设平面SAC的法向量为
m
=(x,y,z),
AC
m
=0
AS
m
=0
,即
x+y=0
1
2
y+
3
2
z=0

取x=1,,得
m
=(1,-1,
3
3
),(9分)
平面FAC的法向量为
n
=(0,0,1).(10分)
∴cos<m,n>=
m
n
|
m
|•|
n
|
=
7
7
(11分)
而二面角二面角S-AC-F的大小为钝角,
∴二面角二面角S-AC-F的大小为π-arccos
7
7
.(12分)
点评:本题考查的知识点是二面角的平面角及求法,平面与平面平行的判定,(I)的关键是要找到AF∥BC,同时EF∥SC,(II)的关键是建立坐标系,求出两个平面的法向量,将二面角问题转化为向量的夹角问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)
(1)证明:P-ABC为正四面体;
(2)若PD=PA=
12
求二面角D-BC-A的大小;(结果用反三角函数值表示)
(3)设棱台DEF-ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF-ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有
(1)(2)(3)
(1)(2)(3)
.(填上所有正确命题的序号) 
(1)动点A′在平面ABC上的射影在线段AF上;
(2)三棱锥A′-FED的体积有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)异面直线A′E与BD不可能互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年上海卷)(16分)

如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)     证明:P-ABC为正四面体;

(2)     若PD=PA, 求二面角D-BC-A的大小;(结果用反三角函数值表示)

(3)     设棱台DEF-ABC的体积为V, 是否存在体积为V且各棱长均相等的直

平行六面体,使得它与棱台DEF-ABC有相同的棱长和? 若存在,请具体构造

出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届广东实验中学高二上学期期中理科数学试卷(解析版) 题型:解答题

(本小题满分14分)

如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)求证:P-ABC为正四面体;

(2)棱PA上是否存在一点M,使得BM与面ABC所成的角为45°?若存在,求出点M的位置;若不存在,请说明理由。

(3)设棱台DEF-ABC的体积为V=, 是否存在体积为V且各棱长均相等的平行六面体,使得它与棱台DEF-ABC有相同的棱长和,并且该平行六面体的一条侧棱与底面两条棱所成的角均为60°? 若存在,请具体构造出这样的一个平行六面体,并给出证明;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有________.(填上所有正确命题的序号)
(1)动点A′在平面ABC上的射影在线段AF上;
(2)三棱锥A′-FED的体积有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)异面直线A′E与BD不可能互相垂直.

查看答案和解析>>

同步练习册答案