精英家教网 > 高中数学 > 题目详情
若n∈N,求证:xn+1+(x+1)2n-1能被x2+x+1整除.

证明:(1)当n=1时,命题显然成立.

(2)设当n=k时,xk+1+(x+1)2k-1能被x2+x+1整除.

法1:(添项)当n=k+1时,

xk+2+(x+1)2k+1=(x+1)2(x+1)2k-1+xk+2+(x+1)2xk+1-(x+1)2xk+1

=(x+1)2[(x+1)2k-1+xk+1]-(x2+x+1)xk+1,

而上面各项都能被x2+x+1整除,即n=k+1时成立.

法2:(拆项)当n=k+1时

xk+2+(x+1)2k+1=(x+1)2(x+1)2k-1+xk+2=(x2+x+1)(x+1)2k-1+x[(x+1)2k-1+xk+1],

以上各项都能被x2+x+1整除,即n=k+1时成立.

由(1)(2)命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)顺次为直线y=
x
4
+
1
12
上的点,点A1(x1,0),A2(x2,0),…An(xn,0),…(n∈N*)顺次为x轴上的点,其中x1=a(0<a<1),对任意的n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.
(Ⅰ)证明:数列{yn}是等差数列;
(Ⅱ)求证:对任意的n∈N*,xn+2-xn是常数,并求数列{xn}的通项公式;
(Ⅲ)在上述等腰三角形AnBnAn+1中是否存在直角三角形,若存在,求出此时a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)给定有限单调递增数列{xn}(n∈N*,n≥2)且xi≠0(1≤i≤n),定义集合A={(xi,xj)|1≤i,j≤n,且i,j∈N*}.若对任意点A1∈A,存在点A2∈A使得OA1⊥OA2(O为坐标原点),则称数列{xn}具有性质P.
(I)判断数列{xn}:-2,2和数列{yn}:-2,-l,1,3是否具有性质P,简述理由.
(II)若数列{xn}具有性质P,求证:
①数列{xn}中一定存在两项xi,xj使得xi+xj=0:
②若x1=-1,xn>0且xn>1,则x2=l.

查看答案和解析>>

科目:高中数学 来源: 题型:

若n∈N,求证:xn+1+(x+1)2n-1能被x2+x+1整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,满足关系Sn=2an-2.

(1)求数列{an}的通项公式;

(2)设数列{bn}的前n项和为Tn,且bn=,求证:对任意正整数n,总有Tn<2;

(3)在正数数列{cn}中,设(cn)n+1=an+1(n∈N*),求数列{lncn}中的最大项.

(文)已知数列{xn}满足xn+1-xn=()n,n∈N*,且x1=1.设an=xn,且T2n=a1+2a2+3a3+…+ (2n-1)a2n-1+2na2n.

(1)求xn的表达式;

(2)求T2n;

(3)若Qn=1(n∈N*),试比较9T2n与Qn的大小,并说明理由.

查看答案和解析>>

同步练习册答案