精英家教网 > 高中数学 > 题目详情
(理科)已知二次函数f(x)=x2+ax+b(a,b∈R)的定义域为[-1,1],且|f(x)|的最大值为M.
(Ⅰ)试证明|1+b|≤M;
(Ⅱ)试证明M≥
1
2

(Ⅲ)当M=
1
2
时,试求出f(x)的解析式.
(Ⅰ)证明:∵M≥|f(-1)|=|1-a+b|,M≥|f(1)|=|1+a+b|
∴2M≥|1-a+b|+|1+a+b|≥|(1-a+b)+(1+a+b)|=2|1+b|
∴M≥|1+b|
(Ⅱ)证明:依题意,M≥|f(-1)|,M≥|f(0)|,M≥|f(1)|
又|f(-1)|=|1-a+b|,|f(1)|=|1+a+b|,|f(0)|=|b|
∴4M≥|f(-1)|+|f(0)|+|f(1)|=|1-a+b|+2|b|+|1+a+b|≥|(1-a+b)-2b+(1+a+b)|=2
M≥
1
2

(Ⅲ)依M=
1
2
时,|f(0)|=|b|≤
1
2
-
1
2
≤b≤
1
2
①同理-
1
2
≤1+a+b≤
1
2
-
1
2
≤1-a+b≤
1
2

②+③得:-
3
2
≤b≤-
1
2
④由①、④得:b=-
1
2

b=-
1
2
时,分别代入②、③得:
-1≤a≤0
0≤a≤1
?a=0
,因此f(x)=x2-
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)已知二次函数f(x)=x2-ax+a(a>0,x∈R),不等式f(x)≤0的解集有且只有一个元素,设数列{an}的前n项和Sn=f(n)(n∈N*)
(1)求数列{an}的通项公式;
(2)设bn=
an
3n
,求数列{bn}的前n项和Tn
(3)设各项均不为0的数列{cn}中,所有满足cm•cm+1<0的正整数m的个数,称为这个数列{cn}的变号数,若cn=1-
a
an
(n∈N*)
,求数列{cn}的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知二次函数f(x)=x2+ax+b(a,b∈R)的定义域为[-1,1],且|f(x)|的最大值为M.
(Ⅰ)试证明|1+b|≤M;
(Ⅱ)试证明M≥
1
2

(Ⅲ)当M=
1
2
时,试求出f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)已知二次函数f(x)=x2+ax+b(a,b∈R)的定义域为[-1,1],且|f(x)|的最大值为M.
(Ⅰ)试证明|1+b|≤M;
(Ⅱ)试证明数学公式
(Ⅲ)当数学公式时,试求出f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)已知二次函数f(x)=x2-ax+a(a>0,x∈R),不等式f(x)≤0的解集有且只有一个元素,设数列{an}的前n项和Sn=f(n)(n∈N*)
(1)求数列{an}的通项公式;
(2)设数学公式,求数列{bn}的前n项和Tn
(3)设各项均不为0的数列{cn}中,所有满足cm•cm+1<0的正整数m的个数,称为这个数列{cn}的变号数,若数学公式,求数列{cn}的变号数.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省武汉市教科院高三(上)第一次调考数学试卷(文理合卷)(解析版) 题型:解答题

(理科)已知二次函数f(x)=x2-ax+a(a>0,x∈R),不等式f(x)≤0的解集有且只有一个元素,设数列{an}的前n项和Sn=f(n)(n∈N*)
(1)求数列{an}的通项公式;
(2)设,求数列{bn}的前n项和Tn
(3)设各项均不为0的数列{cn}中,所有满足cm•cm+1<0的正整数m的个数,称为这个数列{cn}的变号数,若,求数列{cn}的变号数.

查看答案和解析>>

同步练习册答案