精英家教网 > 高中数学 > 题目详情
在数列{an} 中,a1=1,an=2(an-1-1)+n(n≥2,n∈N*
(1)求a2,a3的值;
(2)证明:数列{an+n}是等比数列,并求{an} 的通项公式;
(3)求数列{an} 的前n项和Sn
分析:(1)令递推关系中的n分别取2,3求出a2,a3的值.
(2)利用已知的递推关系求出
an+1+n+1
an+ n
的值是常数,据等比数列的定义得证;利用等比数列的通项公式
求出an+n通过解方程求出an
(3)通过分组,再利用等比数列及等差数列的前n项和公式求出数列{an} 的前n项和Sn
解答:解:(1)a1=1,an=2an-1+n-2(n≥2,n∈N*
∴a2=2a1+2-2=2…(2分)
a3=2a2+3-2=5…(4分)
(2)证明:∵
an+1+n+1
an+ n
=
(2an+n-1)+n+1
an+n
=2

∴数列{an+n}是首项为a1+1=2公比为2的等比数列…(7分)
an+n=2•2n-1=2n,即an=2n-n
∴{an}的通项公式为an=2n-n…(9分)
(3)∵{an}的通项公式为an=2n-n
∴Sn=(2+22+23+…+2n)-(1+2+3+…+n)…(11分)
=
2(1-2n)
1-2
-
n(n+1)
2
=2n+1-
n2+n+4
2
…(12分)
点评:证明数列是特殊数列常用的方法是定义法;求数列的前n项和时关键是判断出数列通项的特点,然后选择合适的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知点(n,an)(n∈N*)都在直线3x-y-24=0上,那么在数列an中有a7+a9=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,an+1=an+ln(1+
1n
)
,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

14、在数列{an}中,若a1=1,an+1=an+2(n≥1),则该数列的通项an=
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中a1=
1
2
a2=
1
5
,且an+1=
(n-1)an
n-2an
(n≥2)

(1)求a3、a4,并求出数列{an}的通项公式;
(2)设bn=
anan+1
an
+
an+1
,求证:对?n∈N*,都有b1+b2+…bn
3n-1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

一般地,在数列{an}中,如果存在非零常数T,使得am+T=am对任意正整数m均成立,那么就称{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),设S2009为其前2009项的和,则当数列{xn}的周期为3时,S2009=
1339+a
1339+a

查看答案和解析>>

同步练习册答案