精英家教网 > 高中数学 > 题目详情
已知方程x2-8x+6lnx-m=0有三个不同的实数解,则实数m范围为______.
方程x2-8x+6lnx-m=0有三个不同的实数解
则函数m(x)=x2-8x+6lnx-m的图象与x轴的正半轴有且只有三个不同的交点.
∵m(x)=x2-8x+6lnx-m,
?′(x)=2x-8+
6
x
=
2x2-8x+6
x
=
2(x-1)(x-3)
x
(x>0)

当x∈(0,1)时,m'(x)>0,m(x)是增函数;
当x∈(0,3)时,m'(x)<0,m(x)是减函数;
当x∈(3,+∞)时,m'(x)>0,m(x)是增函数;
当x=1,或x=3时,m'(x)=0.
∴m(x)最大值=m(1)=-m-7,m(x)最小值=m(3)=-m+6ln3-15.
∵当x充分接近0时,m(x)<0,当x充分大时,m(x)>0.
∴要使m(x)的图象与x轴正半轴有三个不同的交点,必须且只须
?(x)最大值=-m-7>0
?(x)最小值=-m+6ln3-15<0

即6ln3-15<m<-7.
故答案为:6ln3-15<m<-7
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、已知等比数列an中,a1,a13是方程x2-8x+1=0的两个根,则a7等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=8x的准线与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于A,B两点,双曲线的一条渐近线方程是y=2
2
x
,点F是抛物线的焦点,且△FAB是直角三角形,则双曲线的标准方程是(  )
A、
x2
16
-
y2
2
=1
B、x2-
y2
8
=1
C、
x2
2
-
y2
16
=1
D、
x2
8
-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2-8x+6lnx-m=0有三个不同的实数解,则实数m范围为
 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省淮安市清江中学高二(上)期末数学试卷(解析版) 题型:填空题

已知方程x2-8x+6lnx-m=0有三个不同的实数解,则实数m范围为   

查看答案和解析>>

同步练习册答案