精英家教网 > 高中数学 > 题目详情
设a1、d为实数,若首项为a1,公差为d的等差数列{an}的前n项的和为Sn,满足S5•S6=-15,则a1的取值范围是
(-∞,-2
10
]∪[2
10
,+∞)
(-∞,-2
10
]∪[2
10
,+∞)
分析:由已知,得到(5a1+10d)(6a1+15d)=-15,即30d2+27a1d+6a12+3=0,将此式看作关于d的一元二次方程,利用△≥0 去求a1 的取值范围.
解答:解:∵S5•S6=-15,由等差数列的前n项公式得(5a1+10d)(6a1+15d)=-15,
展开并化简整理得30d2+27a1d+6a12+3=0,将此式看作关于d的一元二次方程,a1为系数.
∵a1、d为实数,∴△=27a1 2-4×30×(6a12+3 )≥0.化简整理得a12-40≥0,∴a1 (-∞,-2
10
]∪[2
10
,+∞)

故答案为:(-∞,-2
10
]∪[2
10
,+∞)
点评:本题考查等差数列的前n项公式,一元二次方程根存在的判定,一元二次不等式的解法.本题的关键是用方程的眼光看待 30d2+27a1d+6a12+3=0.本题还可以求d的取值范围,请读者自行解答.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设a1、d为实数,若首项为a1,公差为d的等差数列{an}的前n项的和为Sn,满足S5•S6=-15,则a1的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市黄浦区格致中学高三(上)第二次测验数学试卷(理科)(解析版) 题型:填空题

设a1、d为实数,若首项为a1,公差为d的等差数列{an}的前n项的和为Sn,满足S5•S6=-15,则a1的取值范围是   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市黄浦区格致中学高三(上)第二次测验数学试卷(理科)(解析版) 题型:填空题

设a1、d为实数,若首项为a1,公差为d的等差数列{an}的前n项的和为Sn,满足S5•S6=-15,则a1的取值范围是   

查看答案和解析>>

科目:高中数学 来源:2012年江苏省盐城市东台中学高三数学专项训练:数列(2)(解析版) 题型:填空题

设a1、d为实数,若首项为a1,公差为d的等差数列{an}的前n项的和为Sn,满足S5•S6=-15,则a1的取值范围是   

查看答案和解析>>

同步练习册答案