精英家教网 > 高中数学 > 题目详情
已知f()=+,求f(x).

解法一:∵f()=+

    =()2-+=()2-=()2-+1,

    ∴f(x)=x2-x+1.

解法二:设=u,

    则x=,u≠1.

    则f(u)=f()=+=1++=1+(u-1)2+(u-1).

    ∴f(x)=x2-x+1(x≠1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2e
,g(x)=2alnx(e为自然对数的底数,a>0)
(1)求F(x)=f(x)-g(x)的单调区间,若F(x)有最值,请求出最值;
(2)当a=1时,求f(x)与g(x)图象的一个公共点坐标,并求它们在该公共点处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=
2x4x+1

(1)求f(x)在(-1,1)上的解析式;
(2)试判断函数f(x)在区间(0,1)上的单调性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的解析式:
(1)已知f(
x
+1
)=x+2
x
,求f(x+1);
(2)设f(x)满足f(x)-2f(
1
x
)=x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域是x≠0的一切实数,对于定义域内任意的x1,x2都有f(x1•x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1.
(1)求证f(x)是偶函数;
(2)求证f(x)在(0,+∞)上是增函数;
(3)若f(a+1)>f(a)+1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(0,+∞)上的函数,且对任意正数x,y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0.
(1)证明f(x)在(0,+∞)上为增函数;
(2)若f(3)=1,集合A={x|f(x)>f(x-1)+2},B={x|f(
(a+1)x-1x+1
)>0,a∈R}
,A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案