精英家教网 > 高中数学 > 题目详情
求(a-2b-3c)10的展开式中含a3b4c3项的系数.

解析:(a-2b-3c)10=(a-2b-3c)(a-2b-3c) …(a-2b-3c),从10个括号中任取3个括号,

从中取a;再从剩余7个括号中任取4个括号,从中取-2b;最后从剩余的3个括号中取-3c,得含a3b4c3的项为a3·(-2b)4 (-3c)3=24(-3)3a3b4c3.所以含a3b4c3项的系数为-×16×27=1 814 400.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)已知矩阵M=
2
3
-
1
3
1
3
1
3
,△ABC的顶点为A(0,0),B(2,0),C(1,2),求△ABC在矩阵M-1的变换作用下所得△A′B′C′的面积.
(Ⅱ)极坐标的极点是直角坐标系原点,极轴为X轴正半轴,直线l的参数方程为
x=x0+
1
2
t
y=
3
2
t

(t为参数).⊙O的极坐标方程为ρ=2,若直线l与⊙O相切,求实数x0的值.
(Ⅲ)已知a,b,c∈R+,且
1
a
+
2
b
+
3
c
=2
,求a+2b+3c的最小值及取得最小值时a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-5:不等式选讲)
已知a,b,c∈R+,且
1
a
+
2
b
+
3
c
≤|x|+|x-2|对?x∈R恒成立,求a+2b+3c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-3,2),
b
=(2,1),
c
=(3,-1),t∈R

(1)求
a
+2
b
-3
c
的坐标表示;
(2)若
a
-t
b
c
共线,求实数t.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)已知a,b,c∈(0,+∞),且
1
a
+
2
b
+
3
c
=2
,求a+2b+3c的最小值及取得最小值时a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲已知实数a,b,c满足a2+2b2+3c2=24
①求a+2b+3c的最值;
②若满足题设条件的任意实数a,b,c,不等式a+2b+3c>|x+1|-14恒成立,求实数x的取值范围.

查看答案和解析>>

同步练习册答案