精英家教网 > 高中数学 > 题目详情

(2)若log2(3x-2)<2,试求x的取值范围.


解析:

由log2(3x-2)<2得0<3x-2<4

故x的取值范围为 (没考虑真数>0,总共扣2分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足2Sn=pan-2n,n∈N*,其中常数p>2.
(1)证明:数列{an+1}为等比数列;
(2)若a2=3,求数列{an}的通项公式;
(3)对于(2)中数列{an},若数列{bn}满足bn=log2(an+1)(n∈N*),在bk与bk+1之间插入2k-1(k∈N*)个2,得到一个新的数列{cn},试问:是否存在正整数m,使得数列{cn}的前m项的和Tm=2011?如果存在,求出m的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|log2(x-1)<1},集合B={x|x2-ax+b<0,a,b∈R}.
(1)若A=B,求a,b的值;
(2)若b=3,且A∪B=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
(1)已知f(x)=|x-a|,若不等式f(x)≤2解集为{x|-1≤x≤3},求a的值;
(2)若log2(|x-a|+|x-3|)≥2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=log2(x2+bx+c),且f(1)=2,f(3)=3
(1)求f(x)的解析式.
(2)若x≥3求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年四川省高一上学期期中考试数学试卷 题型:解答题

(本小题满分12分)

已知集合A={x|log2(x-1)<1},集合B={x|x2-ax+b<0,a,b∈R}.

(1)若A=B,求a,b的值;

(2)若b=3,且A∪B=A,求a的取值范围.

 

查看答案和解析>>

同步练习册答案