精英家教网 > 高中数学 > 题目详情
记数列an是首项a1=a,公差为2的等差数列;数列bn满足2bn=(n+1)an,若对任意n∈N*都有bn≥b5成立,则实数a的取值范围为______.
由题意可得:数列{an}是首项a1=a,公差为2的等差数列
所以an=a+2(n-1)=2n+(a-2).
所以bn=n2+
a
2
n
+
a
2
-1,即bn是关于n的一元二次函数.
由二次函数的性质可得:
9
2
≤ -
a
4
11
2

解得:-22≤a≤-18.
故答案为:[-22,-18].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记数列an是首项a1=a,公差为2的等差数列;数列bn满足2bn=(n+1)an,若对任意n∈N*都有bn≥b5成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的首项a1=
1
2
,且an+1=
1
2
an,n是偶数
an+
1
4
是奇数
,记bn=a2n-1-
1
4
,n=1,2,3…

(1)求a2•a3
(2)判断数列{bn}是否为等比数列,并证明你的结论;
(3)证明b1+3b2+5b3+…+(2n-1)bn
3
2

查看答案和解析>>

科目:高中数学 来源:2011年江苏省扬州市期末数学复习试卷(一)(解析版) 题型:填空题

记数列an是首项a1=a,公差为2的等差数列;数列bn满足2bn=(n+1)an,若对任意n∈N*都有bn≥b5成立,则实数a的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市十三校高三(上)第一次联考数学试卷(文科)(解析版) 题型:填空题

记数列an是首项a1=a,公差为2的等差数列;数列bn满足2bn=(n+1)an,若对任意n∈N*都有bn≥b5成立,则实数a的取值范围为   

查看答案和解析>>

同步练习册答案