精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2ax2+4x-3-a,a∈R.
(Ⅰ)当a=1时,求函数f(x)在[-1,1]上的最大值;
(Ⅱ)如果函数f(x)在区间[-1,1]上存在零点,求a的取值范围.
分析:(Ⅰ)当a=1时,则f(x)=2x2+4x-4=2(x2+2x)-4=2(x+1)2-6,由此可得f(x)的最大值f(1)的值.
(Ⅱ)当a=0时,经检验满足条件.当a≠0时,令△=0求得a=-1,a=-2,经检验都满足条件.
当f(-1)•f(1)≤0时,求出a的取值范围.当y=f(x)在区间[-1,1]上有两个零点时,
利用二次函数的性质求得实数a的取值范围.再把以上实数a的取值范围取并集,即得所求.
解答:解:(Ⅰ)当a=1时,则f(x)=2x2+4x-4=2(x2+2x)-4=2(x+1)2-6.
因为x∈[-1,1],所以x=1时,f(x)的最大值f(1)=2.…(3分)
(Ⅱ)(1)当a=0时,f(x)=4x-3,显然在区间[-1,1]上有零点,所以a=0时,命题成立.…(4分)
(2)当a≠0时,令△=16+8a(3+a)=8(a+1)(a+2)=0,解得a=-1,a=-2.   …(5分)
①当a=-1时,f(x)=-2x2+4x-2=-2(x-1)2,f(x)的零点为 x=1,满足条件.
②当 a=-2时,f(x)=-4x2+4x-1=-4(x-
1
2
)2
,求得函数的零点 x=
1
2
,满足条件.
所以当 a=0,-1,-2时,y=f(x)均恰有一个零点在区间[-1,1]上.…(7分)
③当f(-1)•f(1)=(a-7)(a+1)≤0,即-1≤a≤7时,
y=f(x)在区间[-1,1]上必有零点.…(8分)
④若y=f(x)在区间[-1,1]上有两个零点,则
a>0
△=8(a+1)(a+2)>0
-1<-
1
a
<1
f(-1)≥0
f(1)≥0

a<0
△=8(a+1)(a+2)>0
-1<-
1
a
<1
f(-1)≤0
f(1)≤0.
.…(12分)
解得a≥7或a<-2.
综上所述,函数f(x)在区间[-1,1]上存在极值点,实数a的取值范围是{a|a≥-1,或a≤-2},
故答案为 {a|a≥-1,或a≤-2}.…(13分)
点评:本题主要考查求二次函数在闭区间上的最值,求函数的最值,二次函数的性质的应用,体现了分类讨论的
数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案