精英家教网 > 高中数学 > 题目详情
1______{x|x=-a2+1,a∈N*}.
将x=-a2+1看做自变量为a,函数值为x的一元二次函数.其中定义域为N*
根据题意,此抛物线开口向下,对称轴为a=0,
∵定义域为a∈N*
∴在函数整个定义域上为减函数,
当a=1时取最大值,最大值为0,
∴很明显,1∉{x|x=-a2+1,a∈N*}.
故答案为∉.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(x2,y-cx)
n
=(1,x+b)
m
n
,(x,y,b,c∈R),且把其中x,y所满足的关系式记为y=f(x),若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求
b
a
和c的值;
(Ⅱ)若函数f(x)在[
a
2
a2]
上单调递减,求b的取值范围;
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A,B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),若P为S(t)上一动点,D(4,0),求直线PD的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

6、1
{x|x=-a2+1,a∈N*}.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1+x)t-1的定义域为(-1,+∞),其中实数t满足t≠0且t≠1.直线l:y=g(x)是f(x)的图象在x=0处的切线.
(1)求l的方程:y=g(x);
(2)若f(x)≥g(x)恒成立,试确定t的取值范围;
(3)若a1,a2∈(0,1),求证:
a
a1
1
+
a
a2
2
a
a2
1
+
a
a1
2

注:当α为实数时,有求导公式(xα)′=αxα-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3-ax2+(a2-1)x+b(a,b∈R)

(1)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值;
(2)当a≠0时,若f(x)在区间(-1,1)上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:眉山二模 题型:解答题

已知向量
m
=(x2,y-cx)
n
=(1,x+b)
m
n
,(x,y,b,c∈R),且把其中x,y所满足的关系式记为y=f(x),若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求
b
a
和c的值;
(Ⅱ)若函数f(x)在[
a
2
a2]
上单调递减,求b的取值范围;
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A,B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),若P为S(t)上一动点,D(4,0),求直线PD的斜率的取值范围.

查看答案和解析>>

同步练习册答案