精英家教网 > 高中数学 > 题目详情
函数函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若其图像向右平移个单位后得到的函数为奇函数,则函数f(x)的图像                        
[     ]
A.关于点对称      
B.关于点对称
C.关于直线对称    
D.关于直线对称
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).
(1)求f(x)=x3+ax2+bx在区间(0,4]上的最大值与最小值;
(2)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t;若不存在,请说明理由;
(3)设存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域是[ks,kt],求正数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省惠州一中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).数列{an}满足
(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,an>0恒成立?若存在,求出M的最小值,若不存在,请说明理由;
(Ⅲ)若a1=f(0),不等式对不小于2的正整数恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省盐城市盐阜中学高三最后一次模拟数学试卷(解析版) 题型:解答题

设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).
(1)求f(x)=x3+ax2+bx在区间(0,4]上的最大值与最小值;
(2)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t;若不存在,请说明理由;
(3)设存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域是[ks,kt],求正数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省扬州中学高三随堂练习数学试卷(解析版) 题型:解答题

设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).
(1)求f(x)=x3+ax2+bx在区间(0,4]上的最大值与最小值;
(2)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t;若不存在,请说明理由;
(3)设存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域是[ks,kt],求正数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009年高考数学压轴试卷集锦(7)(解析版) 题型:解答题

设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).
(1)求f(x)=x3+ax2+bx在区间(0,4]上的最大值与最小值;
(2)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t;若不存在,请说明理由;
(3)设存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域是[ks,kt],求正数k的取值范围.

查看答案和解析>>

同步练习册答案