精英家教网 > 高中数学 > 题目详情
设椭圆的两个焦点为F1,F2,若双曲线C上的动点到F1,F2的距离之差的绝对值是8,则双曲线的方程是( )
A.
B.
C.
D.
【答案】分析:先根据焦点坐标求得c,进而根据||PF1|-|PF2||=8求得a,最后根据a和c求得b,则双曲线的方程可得.
解答:解:依题意可知双曲线的c=5,
根据双曲线定义及||PF1|-|PF2||=8可知2a=8,a=4,
∴b=3
∴双曲线的方程为 
故选D.
点评:本题主要考查了双曲线的标准方程.解题的关键是熟练掌握和应用标准方程中a,b和c的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•淄博二模)椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为5
2

(1)求此时椭圆C的方程;
(2)设斜率为k(k≠0)的直线m与椭圆C相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,
3
3
)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C以椭圆
x2
25
+
y2
9
=1
的两个焦点为焦点,且双曲线C的焦点到其渐近线的距离为2
3

(1)求双曲线C的方程;
(2)若直线y=kx+m(k≠0,m≠0)与双曲线C交于不同的两点E,F,且E,F都在以P(0,3)为圆心的同一圆上,求实数m的取信范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

椭圆G:的两个焦点为F1F2,短轴两端点B1、B2,已知

F1F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为

  (1)求此时椭圆G的方程;

  (2)设斜率为k(k≠0)的直线m与椭圆G相交于不同的两点EF,Q为EF的中点,问EF两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省台州中学(上)第二次统练数学试卷(理科)(解析版) 题型:解答题

已知点F1,F2为椭圆的两个焦点,点O为坐标原点,圆O是以F1,F2为直径的圆,一条直线与圆O相切并与椭圆交于不同的两点A,B.
(1)设b=f(k),求f(k)的表达式;
(2)若,求直线l的方程;
(3)若,求三角形OAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市渝中区巴蜀中学高二(上)期末数学复习试卷(文科)(解析版) 题型:解答题

椭圆C:+=1(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为5
(1)求此时椭圆C的方程;
(2)设斜率为k(k≠0)的直线m与椭圆C相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

同步练习册答案