精英家教网 > 高中数学 > 题目详情
已知函数f(x)=mx2+2(m-3)x+4,g(x)=mx若对任意实数x,f(x),g(x)的值至少有一个是正数,则实数m的取值范围是
(0,9)
(0,9)
分析:结合题意,当m≤0时显然不成立;当m>0时,再依据对称轴进行分类,综合可得答案.
解答:解:①当m<0时,f(x)为开口向下的抛物线,显然不成立;
②当m=0时,因f(x)=-6x+4,g(x)=0,也不成立;
③当m>0时,f(x)为开口向上的抛物线,恒过点(0,4)
-
b
2a
=
3-m
m
<0时,(如图1)
只要△=4(3-m)2-16m=4(m-1)(m-9)<0即可,解得1<m<9.
-
b
2a
=
3-m
m
≥0,即0<m≤3时结论显然成立,(如图2);
综上可得实数m的取值范围是:(0,9)
故答案为:(0,9).



点评:本题为二次函数根的分布问题,涉及恒成立问题,正确分类是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m•2x+t的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列{an}的前n项和,n∈N*
(1)求Sn及an
(2)若数列{cn}满足cn=6nan-n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+
1
x
)的图象与h(x)=(x+
1
x
)+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下两题任选一题:(若两题都作,按第一题评分)
(一):在极坐标系中,圆ρ=2cosθ的圆心到直线θ=
π
3
(ρ∈R)的距离
3
2
3
2

(二):已知函数f(x)=m-|x-2|,m∈R,当不等式f(x+2)≥0的解集为[-2,2]时,实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步练习册答案