精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinxcosx-1(x∈R),给出下列四个命题:
①若f(x1)=-f(x2),则x1=-x2;       ②f(x)的最小正周期是2π;
③f(x)在区间[-
π
4
π
4
]上是增函数;   ④f(x)的图象关于直线x=
4
对称,
其中正确的命题是
③④
③④
分析:根据题意把函数化简为f(x)=sin2x-1,①可以举例判断其实错误的.②根据周期公式可得函数周期为π.③求出函数的所以单调增区间即可得到③正确.④求出函数的所有对称轴可验证得④正确
解答:解:函数f(x)=2sinxcosx-1=sin2x-1
①f(
π
6
)=-f(
3
),但是不满足x1=-x2,所以①错误.
②根据周期公式可得:f(x)=sin2x-1的最小正周期为π.所以②错误.
③f(x)=sin2x-1的单调增区间为[kπ-
π
4
,kπ+
π
4
],(k∈Z),当k=0时显然③正确.
④f(x)=sin2x-1的所有对称轴为x=
2
+
π
4
,当k=1时显然④正确.
故答案为:③④
点评:解决此类问题的关键是熟练掌握二倍角公式,以及三角函数的有关性质(单调性,周期性,奇偶性,对称性等).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案