精英家教网 > 高中数学 > 题目详情
如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.
(1)求证:FB=FC;
(2)求证:FB2=FA•FD;
(3)若AB是△ABC外接圆的直径,且∠EAC=120°,BC=6,求AD的长.
精英家教网
(1)因为∠EAC=∠ABC+∠ACB=∠ABC+∠BCF+∠ACF=∠ABC+∠BCF+∠ABF=∠BCF+∠FBC
又∠EAC=2∠FAB=2∠BCF
所以∠FCB=∠FBC,
所以FB=FC,(3分)
(2)因为在△FBA△FDB中,∠BFD是公共角,
由于同弦所对的圆周角相等,故∠FAB等于∠FCB,又由(1)∠FCB=∠FBC
故可得∠FBC=∠FAB
所以△FBA△FDB,所以
FB
FD
=
FA
FB
,整理得FB2=FA•FD(6分)
(3)∠EAC=120°,所以∠BAC=60°
因为AB为直径,所以∠ACB=90°,
∴∠ABC=30°,
又∠DAC=60°,∠ACD=90°,可得∠ADC=30°
在直角三角形ABC中,由于BC=6,所以AC=2
3

在直角三角形ADC中,可得AD=4
3
(10分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC的中点,连接AD并延长交⊙O于点E,若PA=2
3
,∠APB=30°.
(Ⅰ)求∠AEC的大小;
(Ⅱ)求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是底角为30°的等腰梯形,AD=2
3
,BC=4
3
,取两腰中点M、N分别交对角线BD、AC于G、H,则
AG
AC
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AD∥BE∥CF,下列比例式成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方体ABCD-A′B′C′D′中,AB=2
3
,AD=2
3
,AA′=2,
(1)哪些棱所在直线与直线BA’是异面直线?
(2)直线BC与直线A’C’所成角是多少度?
(3)哪些棱所在直线与直线AA’是垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)如图,已知PBA是圆O的割线,PC是圆的切线,
C为切点,过点A引AD∥PC,交圆于D点,连接CD,BD,CA.
求证:
(1)CD=CA;
(2)CD2=PA•BD.

查看答案和解析>>

同步练习册答案