精英家教网 > 高中数学 > 题目详情
已知△ABC的面积为2
3
,BC=5,A=60°,则△ABC的周长是
 
分析:由△ABC的面积为2
3
,根据正弦定理的面积公式结合A=60°算出AC•AB=8.再由余弦定理BC2=AC2+AB2-2AC•ABcosA的式子,化简整理得到(AC+AB)2-3AC•AB=25,从而解出AC+AB=7,由此即可解出△ABC的周长.
解答:解:∵△ABC的面积为2
3
,A=60°,
1
2
AC•ABsin60°=2
3
,解得AC•AB=8
根据余弦定理,得BC2=AC2+AB2-2AC•ABcos60°
即AC2+AB2-AC•AB=(AC+AB)2-3AC•AB=BC2=25
∴(AC+AB)2-24=25,可得(AC+AB)2=49,得AC+AB=7
因此,△ABC的周长AB+AC+BC=7+5=12.
故答案为:12.
点评:本题给出三角形ABC的面积,在已知一边和一角的情况下求三角形的周长.着重考查了正余弦定理和三角形面积公式等知识,考查了配方的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知△ABC的面积为14,D、E分别为边AB、BC上的点,且AD:DB=BE:EC=2:1,AE与CD交于P.设存在λ和μ使
AP
AE
PD
CD
AB
=
a
BC
=
b

(1)求λ及μ;
(2)用
a
b
表示
BP

(3)求△PAC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为
3
2
,且b=2,c=
3
,则sinA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为2
3
,AB=2,BC=4,则三角形的外接圆半径为
2或
4
21
3
2或
4
21
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为
1
4
(a2+b2-c2)
,则C的度数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在△ABC中,AD⊥BC,垂足为D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大小;
(Ⅱ)已知△ABC的面积为15,且E为AB的中点,求CE的长.

查看答案和解析>>

同步练习册答案