精英家教网 > 高中数学 > 题目详情
已知Sn数列{an}的前n项和,且Sn=2an-
164

(1)求数列{an}的通项公式;
(2)设bn=|log2an|,求数列{bn}的前n项和Tn
分析:(1)由Sn=2an-
1
64
,推导出a1=
1
64
.
an
an-1
=2,故数列{an}是首项为
1
64
,公比为2的等比数列,由此能求出数列{an}的通项公式.
(2)由bn=|log2an|,an=2n-7,知bn=|log22n-7|=|n-7|,由此能求出数列{bn}的前n项和.
解答:解:(1)∵Sn=2an-
1
64

∴S1=2a1-
1
64
,∴a1=
1
64

当n≥2时,Sn-1=2an-1-
1
64

∴an=Sn-Sn-1=2an-2an-1
∴an=2an-1
an
an-1
=2,
∴数列{an}是首项为
1
64
,公比为2的等比数列,
an=
1
64
2n-1
=2n-7
(2)∵bn=|log2an|,an=2n-7
∴bn=|log22n-7|=|n-7|,
∴数列{bn}的前n项和
Tn=|1-7|+|2-7|+|3-7|+|4-7|+|5-7|+|6-7|+|7-7|+|8-7|+|9-7|+…+|n-7|
=6+5+4+3+2+1+0+1+2+3+…+(n-7)
=
6n+
n(n-1)
2
×(-1),n≤6
21+
n-7
2
(1+n-7),n>6

=
13n-n2
2
,n≥6
n2-13n+84
2
,n<7
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-
1
2
)

(Ⅰ) 求Sn的表达式;
(Ⅱ) 设bn=
Sn
2n+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=
1
2
,Sn是其前n项和,且Sn=n2an-n(n-1)
(1)求{an}的通项公式;
(2)令bn=(
1
2
)n+1-an
,记数列{bn}的前n项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•柳州三模)已知在数列{an}中,a1=t,a2=t2(t>0且t≠1).x=
t
是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(1)证明数列{an+1-an}是等比数列,并求数列{an}的通项公式;
(2)记bn=2(1-
1
an
)
,当t=2时,数列{bn}的前n项和为Sn,求使Sn>2008的n的最小值;
(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有
k
k=1
g(k)
(ak+1)(ak+1+1)
1
3
成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=
1
2
,Sn是其前n项和,且Sn=n2an-n(n-1).
(1)证明:数列{
n+1
n
Sn}
是等差数列;
(2)令bn=(n+1)(1-an),记数列{bn}的前n项和为Tn
①求证:当n≥2时,Tn2>2(
T2
2
+
T3
3
+…+
Tn
n
)

②)求证:当n≥2时,bn+1+bn+2+…+b2n
4
5
-
1
2n+1

查看答案和解析>>

同步练习册答案