精英家教网 > 高中数学 > 题目详情

数列13168   

A.是等差数列,而不是等比数列

B.是等比数列,而不是等差数列

C.既是等差数列,又是等比数列

D.不是等差数列,也不是等比数列

 

答案:D
提示:

若为等数列,则d=2,168=1+(n-1)×2,n=N*,若为等比数列,则q=3,168=3n1,nN*,故此数列不是等差数列,也不是等比数列。

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}为递增的等比数列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.
(I)求数列{an}的通项公式;
(II)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省龙岩一中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

已知{an}为递增的等比数列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.
(I)求数列{an}的通项公式;
(II)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年福建省普通高中毕业班质量检查数学试卷(文科)(解析版) 题型:解答题

已知{an}为递增的等比数列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.
(I)求数列{an}的通项公式;
(II)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年浙江省杭州四中高考数学模拟试卷(文科)(解析版) 题型:解答题

已知{an}为递增的等比数列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.
(I)求数列{an}的通项公式;
(II)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年广东省实验中学高考数学模拟试卷3(理科)(解析版) 题型:解答题

已知{an}为递增的等比数列,且{a1,a3,a5}?{-10,-6,-2,0,1,3,4,16}.
(I)求数列{an}的通项公式;
(II)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.

查看答案和解析>>

同步练习册答案