精英家教网 > 高中数学 > 题目详情
已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列.设bn+2=3log
1
4
an
(n∈N*),数列{cn}满足cn=
1
bnbn+1

(Ⅰ)求证:数列{bn}成等差数列;
(Ⅱ)求数列{cn}的前n项和Sn
分析:(Ⅰ)依题意,可求得an=(
1
4
)
n
,从而可求得bn=3n-2;利用等差数列的定义判断即可;
(Ⅱ)利用裂项法可求得cn=
1
3
1
3n-2
-
1
3n+1
),从而可求得数列{cn}的前n项和Sn
解答:证明:(Ⅰ)∵数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,
∴an=
1
4
(
1
4
)
n-1
=(
1
4
)
n

∵bn+2=3log
1
4
an=3log
1
4
(
1
4
)
n
=3n(n∈N*),
∴bn=3n-2;
∴bn+1-bn=3(n+1)-2-(3n-2)=3,
∴数列{bn}是以1为首项,3为公差的成等差数列.
(Ⅱ)∵cn=
1
bn•bn+1
=
1
(3n-2)[3(n+1)-2]
=
1
3
1
3n-2
-
1
3n+1
),
∵数列{cn}的前n项和为Sn
∴Sn=c1+c2+…+cn
=
1
3
[(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-2
-
1
3n+1
)]
=
1
3
(1-
1
3n+1

=
n
3n+1
点评:本题考查等差关系的确定及数列的求和,突出考查对数的运算性质及等比数列的通项公式与等差数列的判定,考查裂项法求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{ban}是公比为64的等比数列.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求证:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
4
的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求证:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1的等差数列,且公差不为零,而等比数列{bn}的前三项分别是a1,a2,a6
(I)求数列{an}的通项公式an
(II)若b1+b2+…bk=85,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1,公差为2的等差数列,又数列{bn}的前n项和Sn=nan
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若cn=
1bn(2an+3)
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an
(1)若a1、a3、a4成等比数列,求数列{an}的通项公式;
(2)若对任意n∈N*都有bn≥b5成立,求实数a的取值范围;
(3)数列{cn}满足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,当a=-20时,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步练习册答案