精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
9
-
y2
16
=1的左、右焦点分别为F1,F2,点P在双曲线上的左支上且|PF1|•|PF2|=32,求∠F1PF2
 
分析:利用双曲线的方程求得|F1F2|和|PF1|-|PF2|,进而利用配方法求得|PF1|2+|PF2|2的值代入余弦定理求得cos∠F1PF2 的值进而求得∠F1PF2
解答:解:根据双曲线的方程可知,a=3,b=4,c=5
则|F1F2|=2c=10,|PF1|-|PF2|=2a=2×3=6
∴|PF1|2+|PF2|2-2|PF1||PF2|=36
由余弦定理得cos∠F1PF2=
1
2 |PF1||PF2|
(|PF1|2+|PF2|2-|F1F2|2
=
36+2×32-100
2×36
=0
所以∠F1PF2=90°
故答案为:90°
点评:本题主要考查了双曲线的简单性质.考查了考生分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•铁岭模拟)已知双曲线
x2
9
-
y2
m
=1的一个焦点在圆x2+y2-4x-5=0上,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
a
=1
的右焦点为(
13
,0)
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
b2
=1
的右焦点为(
13
,0)
,则该双曲线的渐近线方程为
y=±
2
3
x
y=±
2
3
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
b2
=1 (b>0)
的渐近线方程为y=±
5
3
x,则此双曲线的焦点到渐近线的距离为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
m
=1
的一个焦点在圆x2+y2-4x-5=0上,则双曲线的渐近线方程为
y=±
4
3
x
y=±
4
3
x

查看答案和解析>>

同步练习册答案