精英家教网 > 高中数学 > 题目详情
已知:f(0)=1,对于任意实数x、y,等式f(x-y)=f(x)-y(2x-y+1)恒成立,求f(x)的解析式.
分析:依题意,令x=0,可求得f(-y)=y2-y+1,再令-y=x即可得函数解析式.
解答:解:∵对于任意实数x、y,等式f(x-y)=f(x)-y(2x-y+1)恒成立,且f(0)=1,
∴不妨令x=0,
则有f(-y)=f(0)-y(-y+1)=1+y(y-1)=y2-y+1
再令-y=x得函数解析式为:f(x)=x2+x+1.
点评:本题考查抽象函数及其应用,着重考查赋值法的应用,考查观察与分析能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点F(0,1),直线l:y=-1,P为平面上的动点,点P到点F的距离等于点P到直线l的距离.
(1)求动点P的轨迹C的方程;
(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F在直线l2交轨迹于两点P、Q,交直线l1于点R,求
RP
RQ
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)若A,B是所求轨迹上的两个点,满足OA⊥OB(0为坐标原点),求证:直线AB经过一个定点.
(3)过点F的直线l2交轨迹于两点P、Q,交直线l1于点R,求
RP
RQ
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(0,1),一动圆过点F且与圆x2+(y+1)2=8内切,
(1)求动圆圆心的轨迹C的方程;
(2)设点A(a,0),点P为曲线C上任一点,求点A到点P距离的最大值d(a);
(3)在0<a<1的条件下,设△POA的面积为s1(O是坐标原点,P是曲线C上横坐标为a的点),以d(a)为边长的正方形的面积为s2.若正数m满足s1
14
ms2
,问m是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案