精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项积为Tn,Tn=1-an;数列{bn}的前n项和为Sn,Sn=1-bn
(Ⅰ)设
①证明数列{cn}成等差数列;
②求数列{an}的通项公式;
(Ⅱ)若Tn(nbn+n-2)≤kn对n∈N*恒成立,求实数k的取值范围.

解:(Ⅰ)①由,得



所以,数列{cn}是以2为首项,1为公差的等差数列。


(Ⅱ)因为Sn=1-bn,S1=1-b1=b1
所以b1=,Sn-1=1-bn-1(n≥2),Sn-Sn-1=bn-1-bn,2bn=bn-1(n≥2),
所以数列{bn}是以为首项,为公比的等比数列,
所以
因为对n∈N*恒成立,
所以对n∈N*恒成立,
对n∈N*恒成立,


因为
所以f(n)>f(n+1),
所以,当n∈N*时,f(n)单调递减,
,则

所以,当1≤n<4时,g(n)单调递增;g(4)=g(5);当n≥5时,g(n)单调递减;
设L(n)=f(n)+g(n),则 L(1)<L(2)<L(3),L(3)>L(4)>L(5)>L(6)>……,
所以L(3)最大,且
所以,实数k的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案