精英家教网 > 高中数学 > 题目详情
已知m>0,a1a2>0,则使得
m2+1
m
≥|aix-2|(i=1,2)
恒成立的x的取值范围是(  )
分析:由m>0,
m2+1
m
|aix-2|,利用均值不等式得到|aix-2|≤2,由此能求出结果.
解答:解:∵m>0,∴
m2+1
m
=m+
1
m
≥2,
m2+1
m
|aix-2|,i=1,2.
∴|aix-2|≤2,
解得0≤x≤
4
ai
,(ai>0),
∵a1>a2>0,
∴0≤x≤
4
a1

故选C.
点评:本题考查函数恒等式的应用,解题时要认真审题,注意均值不等式和含绝对值不等式的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设向量
a
=(a1a2)
b
=(b1b2)
,定义一种向量积
a
?
b
=(a1b1a2b2)
,已知
m
=(2,
1
2
)
n
=(
π
3
,0)
,点P(x,y)在y=sinx的图象上运动.Q是函数y=f(x)图象上的点,且满足
OQ
=
m
?
OP
+
n
(其中O为坐标原点),函数y=f(x)的值域是
[-
1
2
1
2
]
[-
1
2
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区模拟)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m>0,a1a2>0,则使得
m2+1
m
≥|aix-2|(i=1,2)
恒成立的x的取值范围是(  )
A.[0,
2
a1
]
B.[0,
2
a2
]
C.[0,
4
a1
]
D.[0,
4
a2
]

查看答案和解析>>

同步练习册答案