精英家教网 > 高中数学 > 题目详情
集合A={x|y=lg(x-1)},集合B={y|y=
x2+2x+5
},则A∩CRB=(  )
A.[1,2)B.[1,2]C.(1,2)D.(1,2]
∵y=
x2+2x+5
=
(x+1)2+4
≥2,∴B=[2,+∞),∴CRB=(-∞,2).
∵x-1>0,∴x>1,∴A=(1,+∞).
∴A∩CRB=(1,+∞)∩((-∞,2)=(1,2).  
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的题号为
 

①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,则-3≤a≤3
②函数y=f(x)与直线x=l的交点个数为0或l
③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称
a∈(
14
,+∞)
时,函数y=lg(x2+x+a)的值域为R;
⑤与函数关于点(1,-1)对称的函数为y=-f(2-x).

查看答案和解析>>

科目:高中数学 来源: 题型:

4、集合A={x|x=3k-2,k∈Z},B={y|y=3l+1,l∈Z},S={y|y=6M+1,M∈Z}之间的关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|y=1og3(2-x)},N={x|l≤x≤3},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x,y|y=ax+1},B={x,y|y=|x|},若A∩B的子集恰有2个,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的为
①③④⑤
①③④⑤

①函数y=f(x)与直线x=1的交点个数为0或l;
②集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,则-3≤a≤3;
③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称;
④函数y=lg(x2+x+a)的值域为R 的充要条件是:a∈(-∞,
14
]

⑤与函数y=f(x)-2关于点(1,-1)对称的函数为y=-f(2-x).

查看答案和解析>>

同步练习册答案