精英家教网 > 高中数学 > 题目详情

已知f(x)=x,g(x)是R上的偶函数,当x>0时,g(x)=lnx,则y=f(x)·g(x)的大致图象为

[  ]

A.

B.

C.

D.

练习册系列答案
相关习题

科目:高中数学 来源:河北省魏县一中2011-2012学年高一上学期期中考试数学试题 题型:044

已知f(x)=loga(1+x),g(x)=loga(1-x)(a>0,a≠1)

(1)求f(x)-g(x)的定义域.

(2)判断函数f(x)-g(x)的奇偶性.

(3)解不等式f(x)-g(x)>0

查看答案和解析>>

科目:高中数学 来源:黑龙江省牡丹江一中2010-2011学年高二下学期期末考试数学理科试题 题型:044

已知f(x)=lnx,g(x)=x2+mx+(m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.

(Ⅰ)求直线l的方程及实数m的值;

(Ⅱ)若h(x)=f(x+1)-(x)(其中是g(x)的导函数),求函数h(x)的最大值;

(Ⅲ)当0<b<a时,求证:f(a+b)-f(2a)<

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知f(x)=x+1,若f(x+1)的图象关于直线x=2对称图象对应的函数为g(x),则g(x)为( )


  1. A.
    6-x
  2. B.
    x-6
  3. C.
    x-2
  4. D.
    -x-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).

(1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值;

(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三8月月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

同步练习册答案