精英家教网 > 高中数学 > 题目详情
过抛物线y2=4x的焦点,作直线与抛物线相交于P、Q两点,求线段PQ中点的轨迹方程.
∵y2=4x的焦点坐标为F(1,0)
∴当直线PQ的斜率k存在时,可设其方程的y=k(x-1),且k≠0
又设P(x1,y1),Q(x2,y2),中点M的坐标为(x0,y0),则有:
2y0=y1+y2
2x0=x1+x2

而由题意,得
y21
=4x1
y22
=4x2

∴(y1+y2)(y1-y2)=4(x1-x2)
y1-y2
x1-x2
=
4
y1+y2

k=
2
y0
…(4分)
∵点M(x0,y0)在直线PQ上
y0=k(x0-1)
y20
=2(x0-1)

即得线段PQ中点的轨迹方程为y2=2(x-1)…(5分)
而当直线PQ的斜率不存在时,有PQ⊥x轴,此时PQ的中点M,即为焦点F(1,0),满足y2=2(x-1)
综上,线段PQ中点的轨迹方程为y2=2(x-1)…(6分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

倾斜角为
π
4
的直线过抛物线y2=4x的焦点且与抛物线交于A,B两点,则|AB|=(  )
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F引两条互相垂直的直线AB、CD交抛物线于A、B、C、D四点.
(1)求当|AB|+|CD|取最小值时直线AB、CD的倾斜角的大小
(2)求四边形ACBD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为
3
2
2
3
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为(  )
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,A、B两点在准线l上的射影分别为M.N,则∠MFN=(  )

查看答案和解析>>

同步练习册答案