精英家教网 > 高中数学 > 题目详情

已知平面上个圆,任意两个都相交. 是否存在直线,与每个圆都有公共点?证明

你的结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知对于任意实数k,直线(
3
k+1)x+(k-
3
)y-(3k+
3
)=0
恒过定点F.设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为2+
3

(1)求椭圆C的方程;
(2)设(m,n)是椭圆C上的任意一点,圆O:x2+y2=r2(r>0)与椭圆C有4个相异公共点,试分别判断圆O与直线l1:mx+ny=1和l2:mx+ny=4的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下5个命题:
①曲线x2-(y-1)2=1按
a
=(1,-2)
平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,|
PA
|-|
PB
|=n
,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量
AB
AP
夹角为锐角θ,且满足 |
PB
| |
AB
| +
PA
AB
=0
,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知曲线C上任意一点P到两个定点F1(-
3
,0)
F2(
3
,0)
的距离之和为4.
(1)求曲线C的方程;
(2)设过(0,-2)的直线l与曲线C交于A、B两点,以线段AB为直径作圆.试问:该圆能否经过坐标原点?若能,请写出此时直线l的方程,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(-
3
,0),N(
3
,0)
是平面上的两个定点,动点P满足|PM|+|PN|=2
6

(1)求动点P的轨迹方程;
(2)已知圆方程为x2+y2=2,过圆上任意一点作圆的切线,切线与(1)中的轨迹交于A,B两点,O为坐标原点,设Q为AB的中点,求|OQ|长度的取值范围.

查看答案和解析>>

同步练习册答案