精英家教网 > 高中数学 > 题目详情
7.双曲线S的中心在原点,焦点在x轴上,离心率e=$\frac{\sqrt{6}}{2}$,直线$\sqrt{3}$x-3y+5=0上的点与双曲线S的右焦点的距离的最小值等于$\frac{4\sqrt{3}}{3}$.
(1)求双曲线S的方程;
(2)设经过点(-2,0),斜率等于k的直线与双曲线S交于A,B两点,且以A,B,P(0,1)为顶点的三角形ABP是以AB为底的等腰三角形,求k的值.

分析 (1)由离心率公式和点到直线的距离公式,结合a,b,c的关系,即可得到a,b,进而得到双曲线的方程;
(2)设直线AB:y=k(x+2),代入双曲线的方程,运用韦达定理,讨论k=0,k≠0,由中点坐标公式,结合两直线垂直的条件,可得k的方程,解方程即可得到k的值.

解答 解:(1)e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$,又a2+b2=c2
设右焦点为(c,0),由题意可得d=$\frac{|\sqrt{3}c+5|}{\sqrt{3+9}}$=$\frac{4\sqrt{3}}{3}$,
解得c=$\sqrt{3}$,b=1,a=$\sqrt{2}$,
可得双曲线的方程为$\frac{{x}^{2}}{2}$-y2=1;
(2)设直线AB:y=k(x+2),
当k=0时,可得A(-$\sqrt{2}$,0),B($\sqrt{2}$,0),
即有A,B,P(0,1)为顶点的三角形ABP
是以AB为底的等腰三角形;
当k≠0时,代入双曲线的方程可得
(1-2k2)x2-8k2x-8k2-2=0,
判别式△=64k4+4(1-2k2)(8k2+2)=8+16k2>0恒成立,
x1+x2=$\frac{8{k}^{2}}{1-2{k}^{2}}$,则AB的中点M坐标为($\frac{4{k}^{2}}{1-2{k}^{2}}$,$\frac{2k}{1-2{k}^{2}}$),
由题意可得PM⊥AB,可得kPM=-$\frac{1}{k}$,
即有$\frac{2k-1+2{k}^{2}}{4{k}^{2}}$=-$\frac{1}{k}$,解得k=$\frac{-3±\sqrt{11}}{2}$.
综上可得k=0,或k=$\frac{-3±\sqrt{11}}{2}$.

点评 本题考查双曲线的方程和性质,考查直线和双曲线的方程联立,运用韦达定理和中点坐标公式,以及两直线垂直的条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设a∈R,函数f(x)=cosx(2asinx-cosx)+sin2x的图象的一条对称轴是直线$x=-\frac{π}{6}$.
(Ⅰ)求$f(-\frac{π}{3})$的值和a的值;
(Ⅱ)求函数f(x)在$[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,点P(1,0),以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的方程为:ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$.
(1)求曲线C的直角坐标方程;
(2)直线L过点P交曲线C于A,B两点,且满足|PA|•|PB|=$\frac{6}{5}$,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图是一个正方体的平面展开图,A,B,C均为所在棱的中点,D为正方体的顶点,若正方体的棱长为2,则在正方体中,封闭折线ABCDA的长为3$\sqrt{2}+\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.n≥2,n∈N,求证:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+$\frac{ln4}{{4}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<2(1-$\frac{1}{\sqrt{n}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设自然数n≥3,证明:可将一个正三角形分成n个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在直三棱柱ABC-A1B1C1中,AB=AC,BD=DC,AF=C1F.
(1)求证:平面ADC1⊥平面BCC1B1
(2)求证:DF∥平面A1ABB1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点C在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,以C为圆心的圆与x轴相切于椭圆的右焦点F,若圆C与y轴相切,则椭圆的离心率为(  )
A.$\sqrt{2}$-1B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.比较下列各组数中两个值的大小:
(1)log35.4,log35.5;
(2)lg0.02,1g3.12.

查看答案和解析>>

同步练习册答案