精英家教网 > 高中数学 > 题目详情
(2013•德州一模)已知四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中点,点Q在侧棱PC上.
(1)求证:AD⊥平面PBE;
(2)若Q是PC的中点,求证PA∥平面BDQ;
(3)若VP-BCDE=3VQ-ABCD,试求
CPCQ
的值.
分析:(1)利用线面垂直的判定定理证明.(2)利用线面平行的判定定理证明.(3)根据体积条件确定线段的比值.
解答:解:(1)由E是AD的中点,PA=PD,所以AD⊥PE,
又底面ABCD是菱形,∠BAD=60°,
所以AB=BD,又E是AD的中点,所以AD⊥BE,
又PE∩BE=E,所以AD⊥平面PBE.
(2)连结AC交BD于O,连OQ
因为O是AC的中点,Q是PC的中点,
所以OQ∥PA.又PA?面BDQ,OQ?BDQ,
所以PA∥平面BDQ.
(3)设四棱锥P-BCDE,Q-ABCD的高分别为h1,h2
所以VP-BCDE=
1
3
S△BCDEh1
VQ-ABCD=
1
3
SABCDh2

因为VP-BCDE=3VQ-ABCD,且底面积SBCDE=
3
4
SABCD

所以
CP
CQ
=
h1
h2
=4
点评:本题主要考查空间直线与平面的位置关系的判断,要求熟练掌握相应的判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•德州一模)命题“?x∈R,x2-2x=0”的否定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)在△ABC中,角A,B,C的对边分别为a,b,c,已知角A=
π
3
,sinB=3sinC.
(1)求tanC的值;
(2)若a=
7
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)若正项数列{an}满足1gan+1=1+1gan,且a2001+a2002+a2003+…a2010=2013,则a2011+a2012+a2013+…a2020的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)直线y=-
3
3
x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)设集合A={x|x2-5x-6<0},B={x|5≤x≤7},则A∩B=(  )

查看答案和解析>>

同步练习册答案