精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足

(1)求椭圆C的方程;

(2)是否存在直线,当直线交椭圆于P、Q两点时,使点F恰为的垂心. 若存在,求出直线的方程;若不存在,请说明理由.

(1)根据题意得,

           …………………………2分

       又            

           

椭圆C的方程为  ……………… 4分

   (2)假设存在直线满足条件

       因为,所以  设直线PQ 方程为

       ,由,消

       ,   

      

                  …………………………… 8分

       又F为的垂心,

           

      

      

                 ……………………………………………… 10分

       经检验均满足        ……………………………………………… 11分

       存在满足条件直线方程为:

                ………………………………… 12分

练习册系列答案
相关习题

科目:高中数学 来源:2013届四川省高二下学期期中(文理)数学试卷(解析版) 题型:解答题

已知椭圆的离心率,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足         (1)求椭圆C的方程;

    (2)是否存在直线,当直线交椭圆于P、Q两点时,使点F恰为的垂心(三角形三条高的交点)?若存在,求出直线方程;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆数学公式的离心率数学公式,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足数学公式
(1)求椭圆C的方程;
(2)是否存在直线l,当直线l交椭圆于P、Q两点时,使点F恰为△PQM的垂心.若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年东北三省长春、哈尔滨、沈阳、大连第二次联考数学试卷(理科)(解析版) 题型:解答题

已知椭圆的离心率,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足
(1)求椭圆C的方程;
(2)是否存在直线l,当直线l交椭圆于P、Q两点时,使点F恰为△PQM的垂心.若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学单元检测:圆锥曲线(1)(解析版) 题型:解答题

已知椭圆的离心率,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足
(1)求椭圆C的方程;
(2)是否存在直线l,当直线l交椭圆于P、Q两点时,使点F恰为△PQM的垂心.若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省沈阳市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆的离心率,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足
(1)求椭圆C的方程;
(2)是否存在直线l,当直线l交椭圆于P、Q两点时,使点F恰为△PQM的垂心.若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案