精英家教网 > 高中数学 > 题目详情
(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种?

(2)12个相同的小球放入编号为1,2,3,4的盒子中,每盒可空,问不同的放法有多少种?

解:(1)将12个小球排成一排,中间有11个间隔,在这11个间隔中选出3个,放上“隔板”,若记作“|”看作隔板,则如图00|0000|0000|00隔板将一排球分成四块,从左到右可以看成四个盒子放入的球数,即上图中1,2,3,4四个盒子相应放入2个,4个,4个,2个小球,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11个间隔中选出3个间隔的组合对应于一种放法

    所以不同的放法有=165种.

答:每盒至少有一个小球,有165种不同放法.

(2)因为每盒可空,所以隔板之间允许无球,那么插入法就无法应用,现建立如下数学模型.将三块隔板与12个球分成一排,则如图000||00000|0000中隔板将这一排球放成四块,从左到右可以看成四个盒子放入的球数,即上图中1,2,3,4四个盒子相应放入3个,0个,5个,4个小球,这样每一种隔板与球的排列法,就对应了球的一种放法.排列的位置有15个,先从这15个位置中选出3个位置放隔板有个选法即排法,再在余下的位置放球,只有一种放法,所以隔板与球的排列法有种,即球的放法有=455种.

答:允许空盒,有455种不同的放法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列六个命题:
(1)若f(x-1)=f(1-x),则函数f(x)的图象关于直线x=1对称.
(2) y=f(x-1)与y=f(1-x)的图象关于直线x=0对称.
(3)y=f(x+3)的反函数与y=f-1(x+3)是相同的函数.
(4)y=(
1
2
)|x|-sin2x+2009
无最大值也无最小值.
(5)y=
2tanx
1-tan2x
的周期为π
(6)y=sinx(0≤x≤2π)有对称轴两条,对称中心三个.
则正确命题的个数是(  )
A、1个B、2个C、3个D、0个

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)若某地区每年各个月份降水量发生周期变化.现用函数f(n)=100[Acos(ωn+
23
π)+m]近似地刻画.其中:正整数n表示月份且n∈[1,12],例如n=1时表示1月份,A和m是正整数,ω>0.统计发现,该地区每年各个月份降水量有以下规律:
①各年相同的月份,该地区降水量基本相同;
②该地区降水量最大的8月份和最小的12月份相差约400ml;
③2月份该地区降水量约为100ml,随后逐月递增直到8月份达到最大.
(1)试根据已知信息,确定一个符合条件的f(n)的表达式;
(2)一般地,当该地区降水量超过400 ml时,该地区进入了一年中的“汛季”,那么一年中的哪几个月是该地区的“汛季”?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题包括高考A,B,C,D四个选题中的B,C两个小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量
β
=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:极坐标与参数方程
在直角坐标系x0y中,直线l的参数方程为
x=
1
2
t
y=
2
2
+
3
2
t
(t为参数),若以直角坐标系xOy的O点为极点,Ox为极轴,且长度单位相同,建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-
π
4
)

(1)求直线l的倾斜角;
(2)若直线l与曲线l交于A、B两点,求AB.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省四地六校联考高三上学期第二次月考文科数学卷 题型:解答题

(本小题满分12分)

某小区要建一座八边形的休闲小区,它的主体造型的平面图是由二个相同的矩形ABCD和EFGH构成的面积为200m2的十字型地域,计划在正方形MNPQ上建一座“观景花坛”,造价为4 200元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个空角(如△DQH等)上铺草坪,造价为80元/m2.

(1)设总造价为S元,AD长为m,试建立S与x的函数关系;

(2)当x为何值时,S最小?并求这个最小值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)一个袋中装有大小相同的5个球,现将这5个球分别编号为1,2,3,4,5.

(1)从袋中取出两个球,每次只取出一个球,并且取出的球不放回.求取出的两个球上编号之积为奇数的概率;

(2)若在袋中再放入其他5个相同的球,测量球的弹性,经检测这10个的球的弹性得分如下:8.7, 9.1, 8.3,9.6, 9.4,8.7, 9.7,9.3, 9.2, 8.0, 把这10个球的得分看成一个总体,从中任取一个数,求该数与总体平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

同步练习册答案