精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(wx+φ)(A>0,w>0,-
π
2
<φ
π
2
)一个周期的图象如图所示
(1)求函数f(x)的表达式;
(2)求函数f(x)在R上的单调增区间.
分析:(1)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,从而求得函数的解析式.
(2)令 2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈z,求得x的范围,即可求得函数的增区间.
解答:解:(1)由函数的最值可得A=1,再由
1
4
w
=
π
12
+
π
6

∴w=2.再由五点法作图可得 2(-
π
6
)+φ=0,∴φ=
π
3

故函数的解析式为 f(x)=sin(2x+
π
3
).
(2)令 2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈z,可得 kπ-
12
≤x≤kπ+
π
12
,k∈z,
故函数的增区间为[kπ-
12
,kπ+
π
12
],k∈z.
点评:本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,求复合三角函数的增区间,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案