精英家教网 > 高中数学 > 题目详情
已知f(e)是定义在R上的偶函数,f(0)=1,g(e)是定义在R上的奇函数,且g(e)=f(e-1),则f(2011)+f(2012)+f(2013)=______.
因为f(f)是定义在R上的偶函数,所以f(f)=f(-f),g(f)是定义在R上的奇函数,所以g(f)=-g(-f),
由g(f)=f(f-1),取f=f+1,所以f(f)=g(f+1),又g(f)=-g(-f),所以f(f)=-g(-f-1)=-f(-f-4)=-f(f+4),
则f(f+4)=-f(f),所以f(f+4)=f(f),所以函数f(f)是以4为周期的周期函数.
因为g(f)是定义在R上的奇函数,所以g(0)=0,由g(f)=f(f-1),取f=0,得:f(1)=f(-1)=g(0)=0,又f(0)=1,
所以f(4011)+f(4014)+f(401他)=f(-1)+f(0)+f(1)=0+1+0=1.
故答案为1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(e,+∞)的可导函数,且对于任意的x都有xf'(x)>f(x)>0,给出下列不等式:①f(a)>f(e);②f(a)<f(e);③f(a)>lna•f(e);④f(a)<lna•f(e)其中一定成立的是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的可导函数,对任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,则f(2)与f(e)•ln2的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=lnx-ax.若函数f(x)在其定义域上有且仅有四个不同的零点,则实数a的取值范围是
0<a<e
0<a<e

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海模拟)已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,,满足f(a•b)=af(b)+bf(a),f(2)=2,an=
f(2n)
n
(n∈N*),bn=
f(2n)
2n
(n∈N*)

考查下列结论:
(1)f(0)=f(1);
(2)f(x)为偶函数;
(3)数列{an}为等比数列;
(4)
lim
n→∞
(1+
1
bn
)bn=e

其中正确的是
①③④
①③④

查看答案和解析>>

同步练习册答案