精英家教网 > 高中数学 > 题目详情

.已知抛物线C的顶点在坐标原点,焦点在x轴上,直线与抛物线C相交
于A,B两点,若是AB的中点,则抛物线C的方程为_______________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C的顶点为坐标原点,椭圆C′的对称轴是坐标轴,抛物线C在x轴上的焦点恰好是椭圆C′的焦点
(Ⅰ)若抛物线C和椭圆C′都经过点M(1,2),求抛物线C和椭圆C′的方程;
(Ⅱ)已知动直线l过点p(3,0),交抛物线C于A,B两点,直线l′:x=2被以AP为直径的圆截得的弦长为定值,求抛物线C的方程;
(Ⅲ)在(Ⅱ)的条件下,分别过A,B的抛物线C的两条切线的交点E的轨迹为D,直线AB与轨迹D交于点F,求|EF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点为O(0,0),焦点为F(0,
14
).
(Ⅰ)求抛物线C的标准方程;
(Ⅱ)过抛物线C上的任意一点A(异于原点)向圆I:x2+(y-2)2=r2(0<r<1.2)引两条切线AB、AC,交抛物线于点B、C两点,若恒有直线BC与圆I相切,求圆I的半径r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的中垂线恒过定点Q(6,0),求此抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点在y轴上,且经过点(-1,4),则抛物线的准线方程为
y=-
1
16
y=-
1
16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,焦点F(1,0).
(Ⅰ)求抛物线C的方程;
(Ⅱ)命题:“过抛物线C的焦点F作与x轴不垂直的任意直线l交抛物线于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB||FM|
为定值,且定值是2”.判断它是真命题还是假命题,并说明理;
(Ⅲ)试推广(Ⅱ)中的命题,写出关于抛物线的一般性命题(注,不必证明).

查看答案和解析>>

同步练习册答案