精英家教网 > 高中数学 > 题目详情

已知函数f(x)=(k-1)ax-a-x (a>0,a≠1)为奇函数,且为增函数,则函数y=ax+k的图象为


  1. A.
  2. B.
  3. C.
  4. D.
A
分析:根据函数f(x)为定义在R上的奇函数,由f(0)=0解出k=2,可得函数y=ax+k即y=ax+2.再用导数讨论函数f(x)为增函数得到a>1,所以函数y=ax+2图象位于直线y=2的上方且呈增函数的趋势,由此可得本题答案.
解答:∵函数f(x)=(k-1)ax-a-x (a>0,a≠1)为奇函数,
∴f(0)=(k-1)×a0-a0=0,解之得k=2
因此.函数f(x)表达式为:f(x)=ax-a-x
又∵函数f(x)=ax-a-x是R上的增函数,
∴f'(x)=(lna)ax-(ln)a-x=(lna)(ax+a-x)>0在R上恒成立
∵ax+a-x恒为正数,∴lna>0,可得a>1
由此可得函数y=ax+k,即y=ax+2,
图象过定点(0,3)呈增函数的趋势,且y>2恒成立
由此对照各选项,可得只有A项符合题意
故选:A
点评:本题在已知一个基本初等函数的奇偶性和单调性的情况下,探索与之相关的另一个函数的图象,着重考查了函数的单调性、奇偶性和函数图象的作法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案