精英家教网 > 高中数学 > 题目详情

已知函数f(x)=(-ax2-2x+a)•ex,(a∈R).
(1)当a=-2时,求函数f(x)的单调区间;
(2)若f(x)在[-1,1]上单调递减,求实数a的取值范围.

解:(1)a=-2时,f(x)=(2x2-2x-2)•ex,定义域为R.
f′(x)=)=(2x2-2x-2)•ex+(4x-2)•ex=2(x-1)(x+2)•ex
由f′(x)>0得x<-2或x>1,由f′(x)<0,得-2<x<1,
∴f(x)的单调递增区间为(-∞,-2),(1,+∞),单调递减区间为(-2,-1).
(2)f′(x)=(-ax2-2x+a)•ex+(-2ax-2)•ex=-[ax2+2(a+1)x+2-a]•ex
令g(x)=-ax2-2(a+1)x+a-2.
①当a=0时,g(x)=-2x-2,在(-1,1)内g(x)<0,f′(x)<0,
函数f(x)在[-1,1]上单调递减.
②当a>0时,g(x)=-ax2-2(a+1)x+a-2是二次函数,其对称轴为x=-1-<-1,
当且仅当g(-1)≤0,即a≤0时,f′(x)≤0,此时无解.
③当a<0时,g(x)=-ax2-2(a+1)x+a-2是二次函数,
当且仅当.∴-2≤a<0时,f′(x)≤0,
此时函数f(x)在[-1,1]上单调递减.
综上,实数a的取值范围是[-2,0].
分析:(1)把a=-2代入f(x),解不等式f′(x)>0,f′(x)<0即可;
(2)f(x)在[-1,1]上单调递减,即f′(x)≤0在[-1,1]上恒成立,对a进行分类讨论即可解出a的取值范围.
点评:本题考查导数与函数单调性的关系,对可导函数f(x)来说,f′(x)≤0(不总为0)是f(x)在某区间上单调递减的充要条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案