精英家教网 > 高中数学 > 题目详情
求过点(2,5)的曲线y=x2+1的切线方程.?

思路分析:求曲线在某点x0处导数,若存在,则为切线斜率,即f′(x0)=k.?

解:∵y′=(x2+1)′=2x

k=y′|x=2=4,?

∴所求切线方程为y-5=4(x-2),?

即4x-y-3=0.

温馨提示

曲线上某些特殊点处切线斜率即为该点处导函数的函数值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网精英家教网如图1,OA,OB是某地一个湖泊的两条互相垂直的湖堤,线段CD和曲线段EF分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥CD上某点M分别修建与OA,OB平行的栈桥MG、MK,且以MG、MK为边建一个跨越水面的三角形观光平台MGK.建立如图2所示的直角坐标系,测得线段CD的方程是x+2y=20(0≤x≤20),曲线段EF的方程是xy=200(5≤x≤40),设点M的坐标为(s,t),记z=s•t.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度
(1)求z的取值范围;
(2)试写出三角形观光平台MGK面积S△MGK关于z的函数解析式,并求出该面积的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南师大附中高三(下)第八次月考数学试卷(理科)(解析版) 题型:解答题

如图1,OA,OB是某地一个湖泊的两条互相垂直的湖堤,线段CD和曲线段EF分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥CD上某点M分别修建与OA,OB平行的栈桥MG、MK,且以MG、MK为边建一个跨越水面的三角形观光平台MGK.建立如图2所示的直角坐标系,测得线段CD的方程是x+2y=20(0≤x≤20),曲线段EF的方程是xy=200(5≤x≤40),设点M的坐标为(s,t),记z=s•t.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度
(1)求z的取值范围;
(2)试写出三角形观光平台MGK面积S△MGK关于z的函数解析式,并求出该面积的最小值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市浦东新区高三(下)期中数学试卷(理科)(解析版) 题型:解答题

如图1,OA,OB是某地一个湖泊的两条互相垂直的湖堤,线段CD和曲线段EF分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥CD上某点M分别修建与OA,OB平行的栈桥MG、MK,且以MG、MK为边建一个跨越水面的三角形观光平台MGK.建立如图2所示的直角坐标系,测得线段CD的方程是x+2y=20(0≤x≤20),曲线段EF的方程是xy=200(5≤x≤40),设点M的坐标为(s,t),记z=s•t.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度
(1)求z的取值范围;
(2)试写出三角形观光平台MGK面积S△MGK关于z的函数解析式,并求出该面积的最小值.

查看答案和解析>>

科目:高中数学 来源:《三角函数》2013年高三一轮复习单元训练(北京师范大学附中)(解析版) 题型:解答题

如图1,OA,OB是某地一个湖泊的两条互相垂直的湖堤,线段CD和曲线段EF分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥CD上某点M分别修建与OA,OB平行的栈桥MG、MK,且以MG、MK为边建一个跨越水面的三角形观光平台MGK.建立如图2所示的直角坐标系,测得线段CD的方程是x+2y=20(0≤x≤20),曲线段EF的方程是xy=200(5≤x≤40),设点M的坐标为(s,t),记z=s•t.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度
(1)求z的取值范围;
(2)试写出三角形观光平台MGK面积S△MGK关于z的函数解析式,并求出该面积的最小值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省高考数学仿真押题试卷(05)(解析版) 题型:解答题

如图1,OA,OB是某地一个湖泊的两条互相垂直的湖堤,线段CD和曲线段EF分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥CD上某点M分别修建与OA,OB平行的栈桥MG、MK,且以MG、MK为边建一个跨越水面的三角形观光平台MGK.建立如图2所示的直角坐标系,测得线段CD的方程是x+2y=20(0≤x≤20),曲线段EF的方程是xy=200(5≤x≤40),设点M的坐标为(s,t),记z=s•t.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度
(1)求z的取值范围;
(2)试写出三角形观光平台MGK面积S△MGK关于z的函数解析式,并求出该面积的最小值.

查看答案和解析>>

同步练习册答案